首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2650篇
  免费   170篇
  2023年   11篇
  2022年   12篇
  2021年   40篇
  2020年   28篇
  2019年   34篇
  2018年   52篇
  2017年   43篇
  2016年   85篇
  2015年   126篇
  2014年   145篇
  2013年   167篇
  2012年   238篇
  2011年   219篇
  2010年   134篇
  2009年   117篇
  2008年   179篇
  2007年   155篇
  2006年   132篇
  2005年   138篇
  2004年   127篇
  2003年   130篇
  2002年   104篇
  2001年   45篇
  2000年   34篇
  1999年   30篇
  1998年   38篇
  1997年   27篇
  1996年   27篇
  1995年   20篇
  1994年   21篇
  1993年   26篇
  1992年   25篇
  1991年   14篇
  1990年   13篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   11篇
  1984年   6篇
  1983年   7篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
  1972年   2篇
  1965年   3篇
排序方式: 共有2820条查询结果,搜索用时 15 毫秒
51.
Biosynthesis of proline—or other compatible solutes—is a conserved response of all organisms to different abiotic stress conditions leading to cellular dehydration. However, the biological relevance of this reaction for plant stress tolerance mechanisms remains largely unknown, since there are very few available data on proline levels in stress-tolerant plants under natural conditions. The aim of this work was to establish the relationship between proline levels and different environmental stress factors in plants living on gypsum soils. During the 2-year study (2009–2010), soil parameters and climatic data were monitored, and proline contents were determined, in six successive samplings, in ten taxa present in selected experimental plots, three in a gypsum area and one in a semiarid zone, both located in the province of Valencia, in south-east Spain. Mean proline values varied significantly between species; however, seasonal variations within species were in many cases even wider, with the most extreme differences registered in Helianthemum syriacum (almost 30 μmol g?1 of DW in summer 2009, as compared to ca. 0.5 in spring, in one of the plots of the gypsum zone). Higher proline contents in plants were generally observed under lower soil humidity conditions, especially in the 2009 summer sampling preceded by a severe drought period. Our results clearly show a positive correlation between the degree of environmental stress and the proline level in most of the taxa included in this study, supporting a functional role of proline in stress tolerance mechanisms of plants adapted to gypsum. However, the main trigger of proline biosynthesis in this type of habitat, as in arid or semiarid zones, is water deficit, while the component of ‘salt stress’ due to the presence of gypsum in the soil only plays a secondary role.  相似文献   
52.
Mercury influx in oilseed rape and white lupin was studied using short time influx experiments. The effect of Cu and Mn in Hg influx was also tested. Plants were grown for 2 weeks and then roots were incubated with increasing Hg concentrations (0–50 μM HgCl2), both at 20 °C and ice-cold temperature. An active, saturable component in Hg uptake was found in oilseed rape and white lupin, with K m and V max values in the range of low affinity transporters for essential micronutrients. A reduction in Hg uptake was observed in the presence of Mn for oilseed rape, suggesting that Hg influx is mediated by a Mn transporter. No effects of Cu on Hg influx were observed for any of the two plant species, suggesting a different transport system for Hg and Cu in roots of oilseed rape and white lupin.  相似文献   
53.
Glycolytic enzymes (GEs) have been shown to exist in multienzyme complexes on the inner surface of the human erythrocyte membrane. Because no protein other than band 3 has been found to interact with GEs, and because several GEs do not bind band 3, we decided to identify the additional membrane proteins that serve as docking sites for GE on the membrane. For this purpose, a method known as “label transfer” that employs a photoactivatable trifunctional cross-linking reagent to deliver a biotin from a derivatized GE to its binding partner on the membrane was used. Mass spectrometry analysis of membrane proteins that were biotinylated following rebinding and photoactivation of labeled GAPDH, aldolase, lactate dehydrogenase, and pyruvate kinase revealed not only the anticipated binding partner, band 3, but also the association of GEs with specific peptides in α- and β-spectrin, ankyrin, actin, p55, and protein 4.2. More importantly, the labeled GEs were also found to transfer biotin to other GEs in the complex, demonstrating for the first time that GEs also associate with each other in their membrane complexes. Surprisingly, a new GE binding site was repeatedly identified near the junction of the membrane-spanning and cytoplasmic domains of band 3, and this binding site was confirmed by direct binding studies. These results not only identify new components of the membrane-associated GE complexes but also provide molecular details on the specific peptides that form the interfacial contacts within each interaction.  相似文献   
54.
The prokaryotic oxidation of reduced inorganic sulfur compounds (RISCs) is a topic of utmost importance from a biogeochemical and industrial perspective. Despite sulfur oxidizing bacterial activity is largely known, no quantitative approaches to biological RISCs oxidation have been made, gathering all the complex abiotic and enzymatic stoichiometry involved. Even though in the case of neutrophilic bacteria such as Paracoccus and Beggiatoa species the RISCs oxidation systems are well described, there is a lack of knowledge for acidophilic microorganisms. Here, we present the first experimentally validated stoichiometric model able to assess RISCs oxidation quantitatively in Acidithiobacillus thiooxidans (strain DSM 17318), the archetype of the sulfur oxidizing acidophilic chemolithoautotrophs. This model was built based on literature and genomic analysis, considering a widespread mix of formerly proposed RISCs oxidation models combined and evaluated experimentally. Thiosulfate partial oxidation by the Sox system (SoxABXYZ) was placed as central step of sulfur oxidation model, along with abiotic reactions. This model was coupled with a detailed stoichiometry of biomass production, providing accurate bacterial growth predictions. In silico deletion/inactivation highlights the role of sulfur dioxygenase as the main catalyzer and a moderate function of tetrathionate hydrolase in elemental sulfur catabolism, demonstrating that this model constitutes an advanced instrument for the optimization of At. thiooxidans biomass production with potential use in biohydrometallurgical and environmental applications. Biotechnol. Bioeng. 2013; 110: 2242–2251. © 2013 Wiley Periodicals, Inc.  相似文献   
55.
An analysis was made of the protein content of pollen loads produced by the bees in a hive situated in Viana do Bolo (Ourense, north-west Spain), to establish whether or not the relative quantity of protein in the pollen of each plant species influences the preference made by the bee of the flowers that supply pollen to the hive. This analysis was performed on all types of pollen that formed more than 5% of the pollen spectrum. Pollen load samples were collected directly from the hive from March to September. Pollen loads were separated by colour, and their specific homogeneity was confirmed microscopically. The Bradford method has been used for protein extraction and spectrophotometry was used for the determination of protein content. The results show that the different pollen loads have high protein content. Pollen of the plant species that reached relatively higher percentages in the pollen spectrum are also those that have the highest protein content. These were Cytisus scoparius type, uncultivated Poaceae, Quercus robur type, Sanguisorba minor, Salix fragilis and Spergularia rubra type. The pollen of the systematic units, which had pollen loads that could be identified at the level of species, maintained a constant value of protein content independently of the date the samples were obtained. The pollen of the systematic units, which had pollen loads that could be identified at the level of pollen type, has varied in protein content in the analyses performed on samples obtained on different dates. This result is due to the fact that the different species that integrate the pollen type flower on different dates, and thus have a pollenkitt with different characteristics.  相似文献   
56.
The pollen content of eleven honey samples from ten different apiaries in the Baixa Limia – Serra do Xurés Nature Reserve and other honey commercialised by the cooperative as “Mel do Xurés” (north‐west Spain) was subjected to quantitative and qualitative melissopalynological analysis. The quantitative analysis found that ten samples belonged to Maurizio's Class III and one to Class IV. According to the qualitative analysis, four samples were classified as unifloral honey with Erica, four samples as multifloral honey with Erica pollen as the principal component and three samples as multifloral honey with Cytisus‐type pollen and Erica as the principal component pollen. The pollen spectra differ between the diverse honeys analysed, with a common denominator being Erica and Cytisus‐type pollen being abundant in all. For the rest of the samples, the pollen spectra were mainly the same, but with different relative percentages among secondary elements. Thus, either as a secondary or an important element, 91% of the honeys contained Quercus, 82% Castanea sativa Miller, 45% Rubus, 36% Cistus and 27% Lithodora prostrate (Loisel) Griseb,. In particular, we record for the first time the presence of Ribes and Ilex aquifolium L. pollen in Spanish honeys as an important minor or minor pollen component.  相似文献   
57.
The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and 13C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils.  相似文献   
58.
Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N ε-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.  相似文献   
59.
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39–4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39–4 gene, JIM13 and JIM14 epitopes found specifically in 2–4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.  相似文献   
60.
Caprella penantis is considered a cosmopolitan species and one of the most challenging caprellids in taxonomic terms because of its remarkable intraspecific morphological variation. This study examined DNA sequences from mitochondrial (COI) and nuclear (18S) markers together with morphological data from 25 localities of C. penantis, and closely related species Caprella dilatata and Caprella andreae, all traditionally considered part of the old ‘acutifrons’ complex. The large genetic divergence and reciprocally allopatric distributions point to the existence of a species complex of at least four species, of which one is reported as a cryptic species. This study provides the first evidence of cryptic speciation in the family Caprellidae, and questions the validity of some traditional morphological characters used to delimit species in the genus Caprella. Our results are consistent with the idea that main factors were probably isolation by distance and ecological traits, promoting diversification in C. penantis. The strong genetic structure reported for this species in the Iberian Peninsula and Moroccan coasts also suggests restriction to dispersal as well as the presence of refugial areas. These results highlight the utility of the COI and 18S genes in combination with morphological characters for shedding light on systematic questions in caprellids, and patterns of genetic connectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号